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An Example of a Phase Transition in 
an Open Pseudobimolecular System 
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A phase transition at microscopic level is exhibited for an open bimolecular 
chemical system. We also give another interpretation of an apparent incompati- 
bility between the microscopic and the macroscopic analysis shown by J. Keizer. 
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1. INTRODUCTION 

We consider a chemical system with three reactants X, Y, C and the 
following nonlinear chemical reactions: 

1 k 
2x -x+ Y 2r+ c (1) 

1 k" 

Here 1, l, k, k" are the constants of the reactions. Here, X, Y have varying 
concentrations and the concentration of C is held fixed; we shall write 
k " =  k ' C  -1, where C denotes the concentration of C. The reactions 
2X ~- X + Y have been studied by M. Kac in Ref. 3; the result obtained is 
that the fluctuations are Gaussian and, after having performed the thermo- 
dynamic limit, the fluctuation of X is an Ornstein-Uhlenbeck process. 
Moreover, for nonisolated systems, this type of reaction has been studied 
by Malek-Mansour and Nicolis, (8) Keizer, (4) and analogous systems of 
bimolecular reaction have been studied by Schl6gl (13) (bifurcation theory), 
Nicolis Prigogine, (9), Gortz and Walls, (2) Keizer, ~5) Oppenheim et al., (11) 
and Procaccia and Ross (12) (see also the recent review of McQuarrie and 
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Keizer(6)). In particular the works Refs. 4 and 8 posed the question of the 
compatibility between macroscopic equation and microscopic analysis 
(given by the birth and death process). We shall exhibit here the same kind 
of phenomena but we shall propose another interpretation. 

We begin by sketching our main results. 

a. Consider the reactions (1) with k ' =  0, so that C + 2Y-->X+ Y is 
absent, from the macroscopic point of view; it will be shown in Section 2 
that k = 1 is a bifurcation value; for k/> 1, the stable equilibrium is X = 0, 
and for k < 1 we have a nonzero stable equilibrium. 

b. Now we study the birth and death process in the stationary case; we 
suppose that we have N particles X and Y; denote by X and Y the number 
of particles X and Y, so that X + Y = N. 

If we take k' = 0 in (1), we see that (X)k,=0, N = 0 for any N, so that 
the result predicted by this microscopic analysis seems to be in contradic- 
tion with the result of macroscopic analysis. This phenomenon was exhib- 
ited with other reactions for open systems in Refs. 4 and 8, for example, 

c. Suppose now that we take k' > 0 and let us compute (X)k,,N, then 
take the thermodynamic limit ( N o  + oo) and only after that, take the limit 
k ' ~  0. Then we recover the result predicted by the macroscopic analysis. 
This explanation is different from that of Keizer(4); in this work, Keizer 
considers two reactions A + X--> 2X, 2X ~ E (without converse reaction) 
and he obtains a contradiction between macroscopic analysis and birth and 
death process; in this case, using Kurtz's work, the limit must be taken in 
the following order: First perform for each finite time the thermodynamic 
limit, then take the limit for t ---> + oo. Here our explanation is different; we 
work only at t = + oo (in the stationary case), but the two limits are then 
the first thermodynamic limit and then the limit in k ' ~  0. This means that 
we can use the stationary distribution for the birth and death process only 
if we take into account converse reactions (even with extremely small but 
nonzero constant); this conclusion seems to be quite natural from the point 
of view of chemistry. 

d. Moreover, we can study the fluctuation when k ' o  0 (after having 
performed the thermodynamic limit): we define 

2 
< x  - -  2 

R(k) = lim lim 
k'--~0 N--~ + o0 N 

Then we prove that for k--> 1-,  we have 

R(k) 1 2 + O(1) 
2(1 - k) 2 1 - k 

This means that fluctuation tends to infinity for k--> 1- and that we have a 
phase transition at the microscopic level. 
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We are now preparing another work in which we prove that the 
preceding phenomena are quite general; in fact, we extend our interpreta- 
tion for trimolecular reaction with spatial diffusion. It seems that one has a 
first-order phase transition and that we have other interpretations of the 
results of Refs. 2, 5, and 12. 

2. THE M A C R O S C O P I C  A N A L Y S I S  FOR k' = 0 

Let x be the concentration of X; the macroscopic equation is 

dx = x2(_2 + k + k,) + x(1 - k -  2 k ' ) + k '  (2) 

For k' = 0, the stationary solutions are x = 0, (k - 1) /(k - 2). The linear- 
ization of (2) near x = 0 gives 

ax  = x O  - k )  
dt 

so that x = 0 is unstable for k < 1 and stable for k > 1, (k - 1)/(k - 2) is 
stable for k < 1 and unstable for k > 1. One gets the following bifurcation 
scheme shown in Fig. 1. 

X 

0 , 5  

I 

Fig. 1. 

2 k 

. ANALYSIS OF THE BIRTH AND DEATH PROCESS 

Let X(t) be the birth and death process at time t when there are N 
particles in the system. The equations of definition are (7'8) 

at [ X ( N -  X )  + k ' ( N -  X)2] Prob[X( t  + d t )  = X(t)  + 1] = 

at x ) +  x ( x -  1)] Prob[X( t  + d t )  = X(t)  - 1] = 

at I X ( N -  X)(1 + k) Prob[X( t  + dt) = X( t ) ]  = 1 - 

+ X ( X -  1) + k ' ( N -  X) 2] 

(3) 
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The evolution equation of P(X, t) = Prob[X(t) = X] is then 

ae(x,t) 
- P ( X + I , t )  I [ k ( X +  1 ) ( N - X -  1 ) + X ( X +  1)] 

1 + P ( X -  1, t ) - ~ [ ( X -  1 ) ( N - X +  1 ) + k ' ( N - X +  1) 2 ] 

k/ - P ( X , t )  1 I X ( N -  X)(1 + k)+ X ( X -  1 ) -  ~ ( N -  X)  2] 

We shall denote ( }N the average with respect to this probability 
(suppressing N except if there is no risk of confusion); we obtain for k' = 0 

d(X}  1 
at - N ( -  k X ( N -  X)  + X -  2x  2 + N X )  (4) 

If we write lim2v_~+ ~ ( X / N }  = x and if we suppose, as it is generally done, 
that ( (X /N)2} ' -~ (X /N}  2 if N-~ + ~ ,  we verify that (4) is then the 
macroscopic equation (2) for k' = 0 and this process is formally compatible 
with the macroscopic analysis. 

Define as usual the generating function 

N 

f(s, t) = E sXp( X, t) 
x = 0  

A well-known computation gives (9) 

+ 

For k' = 0, the stationary equation of (5) is 

s(s + 1 - k)f"  - ( N -  1 ) ( s -  k ) f ' =  0 

so that the only physical solution (which has to be a polynomial of degree 
< N with non-negative coefficients) is f (s)= 1, so P (0 )=  1, P(X)= O, 
0 < X < N and (X}N = 0 and (X} = limN_~+~(X}N/N = 0, which is in 
contradiction with the result of the macroscopic equation for k < 1. 

This phenomenon has also been observed by Malek-Mansour and 
Nicolis (8) and commented upon by Keizer (4) for another bimolecular 
reaction in an open system. 
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. 

get 

ANALYSIS OF THE MEAN OF X FOR k ' ~  0 

We now take k' ~ 0 and we put in (5) o = - s[(1 - k ')/(1 - k)]. We 

a ( 1 - a )  df + I k 1) a 
do---- s ~ ( N - 1 - k '  

k ,N2  
X ( -  N + l - k '  + 2 k ' N  ) ~o + -(-:--~ f = O 

We write a = - N ,  f l  = k'N/(1 - k'), y = k/(1 - k ) ( N -  1), and we 
get for k and k' < 1 a hypergeometric function: 

Nk '  k ( N -  l) 
f N ( S ) =  F - N ,  l _ k, , 1 -  k 

(See, for example, Ref. 10.) 

1 - k ' )  
; s--f--Z- ~ 

The case k' = 1, k v ~ 1 gives a confluent hypergeometric function 

( f N ( S ) = F - N ,  1 - k  ; 1 - k  

We will take k > k' (because we make k' tend to 0) and N so large that 

k ( U -  1) Uk'  > - -  
1 - k  1 - k '  

We get an integral representation of fN bY (~~ 

F ( k ( N -  1)/(1 - k)) 

fN(s)  = r ( N k ' / ( 1  - k ' ) ) r ( k ( N -  1)/(1 - k)  - k ' N / ( 1  - k ' ) )  

• f01exp [ N~p(t)]bZ(t )dt  

where bZ( t )=  t - l (1 - t) - k / ( l - k ) - ~ ,  

cp( t ) -  1 - - k ,  lOgt+  1 - k  1 - k '  

We can study the asymptotic of this integral by the saddle point 
method. The critical point of ~ in [0, 1] is 

t 0 ~ -  

1 + [1  + (1 - k ' ) / ( 1  - k)2] 1/2 

2 ( 1  - k ' ) / ( 1  - k )  ~ 
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then 

7r ] 1/2 
l U :  folexp[Nep(t)]bZ(t)dt--exp[Nep(to)]bl(to) [ 2N~-~(t0) 

We compute now ( X ) u  = OfN/OS)[s=l, where fu is the normalized solu- 
tion fu(1 ) = 1. We have 

d F [ _ N ,  Nk' k ( N -  1) s ( 1 -  k ' )~  
[ 1 - k ' '  1 - k  ' ~ = k  ) 

s ~ l  

1 k da 1 - k ' '  1 - k  ' 1 - k  

1 - k' N2k'(1 - k) 
1 - k  ( 1 - k ' ) k ( N - 1 )  

F 

Nk' k ( N -  l) 1 - k ' ]  
• - N + l ' l - k - - - - - - ; + l '  1 - k  +1 ,  1 - k -  ) 

N~' 
k ( N -  l) 

r(k(N- 1)/(1 - k) + 1) 

1 - k '  

• fo'eXp [ N~(t)]b~ 

1 - k '  -1 b a ( t ) - ( 1 -  t)-k/(l-k'-l(1 dr- -~--~ t) 

We deduce, using F(x + 1)=  xF(x), that 

(X)N 1 -- k' b~ 1 
N 1 k bZ(to) - ( 1 - k '  1 - k '  (, + 

But 

] - - k '  ( 1 - k ) + [ ( 1 - k ) 2 + 4 k ' ]  1/2 
k t~ - 2 --> 1 - k if k'--> 0 

lim lim ( X ) N _  1 - k  
k'-->0 N--> + oo N 2 - k 

limk,_~olimu_~+o~(X)w/N= ( 1 -  k ) / ( 2 -  k), which is the result pre- S o  

dicted by the macroscopic equation for k' = 0. 
The conclusion for this model is that we cannot suppress the converse 

reaction in the birth and death process before performing the thermodynamic 
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limit. If we perform the thermodynamic limit and then suppress the converse 
reaction we obtain agreement with the macroscopic analysis. 

. 

with 

FLUCTUATION OF X NEAR k = 1: PHASE TRANSITION 

We have 

(X2)N_(X)2N= ~2fN s=I..~._ ~/N ( OfN )2 
0S2 ~ s = l -  s=l 

We will show that 
lim lim /v\/.J-X2~A22N__~A,.)_N-g(k) 
k'=O N--~+ or N 

1 1 2 + 0 (1 )  
R(k)~ -~ (1 - k) 2 1--Z-kk if k ~  1 -  

The 
asymptotic expansion to a high order. We write 

F(k(N- 1)/(1 - k)) 
fu(S)ls=l = 

F( Nk' 0- L- k )  (1----k')) ( f _ _ ~ , ) ) F ( k ( N - l )  k'N 

• fo lexp [ U,~(t)] b'(O dt 

dfgds ~= , _ r ( k ( U  - 1)/(1 - k) + l) 

k'N ) 
(1-- 7~') 

computation is quite unpleasant because we must apply the 

N~' 
( k ( N - 1 )  Nk' + l F 

r (1- ~') 0 -  ~J 

• fo'eXp [ s~0)]b~(t)dt 

r(k(N - 1)/(1 - k) + 2) d2fUds 2 s=] = N2k'[(N - 1)k '+ 1] 
k [ ( N - 2 ) k +  1] F( Nk' ( k ( N -  1) (1-7,') + 2)r (i :--~,~ 

• fo'eXp [ S~(t)] b"(0 d~ 
where 

1 - k' t~-lbl(t),) bJ(t) = t(l  + 

Uk') 
(f--~') 

1 - k '  )-2 bK(t)=t 2• 1+ ~ t  bl(t) 
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and bl(t) was defined before. In the three cases, the point t o where the 
phase is stationary, is the point t o that we have found earlier. Moreover, 

fo(s) =fN(s)/fN(1).  
We denote by I N, JN, KN the integrals appearing in fN, tiC, f/~ ; we have 

~ 1 N ( 1  - k ' )  JN . f/~ = N ( N -  l ) ( l  - k ' )  2 K m 
f~v = --~U f~v -- 1 -- k IN ' (1 -- k) 2 IN 

Let us recall the full asymptotic expansion of the saddle point method 
for the integral 

I N = fo lg ( t ) exp [  Nqg(t)ldt 

(cf. Ref. 1) writing 

- ~ ' ( t ) ~  • a , , ( t -  to) "+' for t--~t o 
n>O 

g( t )~ E b . ( t -  to)" 
n>O 

g(t) 
~'(t) .>~oE c . ( t -  to)"-' 

an to ) n + 2 u = ~(t) - ~(to)-  X ~ - ~  (t - 
n>O 

We can obtain t - t o from the last relation as an expansion in powers 
of u 1/2 and putting this expansion in -g( t ) / r  we get 

g(t) 
~'(t) ET~176 

If N tends to + cr the asymptotic expansion is 

(n + l) 
IN~exp[  Nq~( to) ] E 7- F - N - ( n + l ) / 2  

n>o 2 

We have here 

( a) 4 bo ' bo 1 hi _ _5 ~oo 7 0 -  (2ao)1/2 , 71 = a0 

72 ao3/~-- ~ -- 5 ~00 bl -[- ~00 2 a 0 4 a2 

K 1 We shall denote by bI, b~,bk ,Tk . . . .  the numbers bk,7 k for the 
corresponding integrals 1, J, K. 

The number a k depends only on the phase cp which is the same for the 
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three integrals. We have 

f~(1)  _ ]__ k, N J  N ] = k' 
fN(1 ) _ ~  IN -- --~ N 

[ 7oJ+ (1/2)yfN -'/2 + (3/4)',/2JN - l  + . . -  

X [ 7 I+ (1/2)71N_1/2 + ( 3 / 4 ) 7 J N - '  + 

SO 

and also 

f•(1) 

fNO) 

flr (1) 

fu(1)  
_ 1 - k '  Y ~ ( N + a J N , / 2 + f i j +  . . . )  

1 k -~ 

~, l(V( v/) 
= 2 Yg vg 

4 yo ~ 4 yg ,,/g 4- ",'d 4 Yg 

_ (1 --  k ' )  2 N ( N -  1) KN 

(1 - k) 2 JN 

= ( ~ l -  k' )2(N - 1) Y~ (N + aKN '/2 + flK + . . . )  

with the same notations for a K, fl K except that we change J in K every- 
where. 

a. We study the term N 2 in (X2)N -- (X)ZN; this term is 

which is proportional to b~//b~ - (bg//b~) 2, which is 0 because of the 
definition of b/'1'K = bl'1'K(to). 

b. We study the term in N3/2; it is 

We must compare 

b ( - ~ b (  
bo 

~- b( b[ 

bob( ) 266' b( 
and b / b / 
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The common value of these two terms is 2t0[1 + (1 - k')/(1 - k)to]-3b(to) 
so the terms in N 3/2 disappear. 

c. Then, as we know, we see that the first term which remains is of 
order N. We look at these terms in N, inf;(1)/fN(1), inf~(1)/fN(1), and in 
-[flv(1)/fN(1)]2: 
In f~(1)/fN(1), 

(11_--~)2 ( "tff i l K _  7ff l - k '  )2 

In f~v(1)/fN(1), 

1 - k '  ~'~ = l - k '  
1 - k  .~d 1 k 8 

In [f;v(1)/fN(1)] 2, 

I - -  1 - - i - ~ )  ~ '  + ' )  

From now on, we can take k' = 0 and study the asymptotics if k ~ 1-.  For 
k' = 0, t o = (1 - k) 2. 

The simpler terms are 

( ,0)2 
f l _  7__~ b__~ to 2 1 + = O ( ( l -  k) 4) 

_ ( ,o)-1 
They tend to 0 if k ~ I after they have been multiplied by their respective 
factors (1 - k) -2 and (1 - k) -1. 

We compute a, e, 7/: 

l | 3 b f f f  11 aa bK 11 al boKb( 3boKb~ b( bK bff(b/)2 [q 
a = 4 [  bd 3 a 0 bd + 3 a 0 bd bd i ,  , ~  + -  1 bobo bobo (bg) 3 

1 ( b /  b~b[) 2 
~ -- ~-~a 0 b0 / i ,  bobo 

1 b ~ [ 3 b 2  s 11 al b(  11 al b~b'( 3bgb~ b[b(+b~(bI)  2 ] 
vl = -~ b--~o [ "bg 3 a o b I + 3 a o bolb~ bo*bd bobo*-----7 --(bg)3 
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We use expansions up to order 2 in powers of 1 - k: 

b A ~  1 1 (1 - k) + o((1 - k) 2) 
b d ( I -  k) 2 (1 - k) 

b~ 1 [ 2 + _2 + 1 
b--~ 2 L (i - k )  4 (1 - k) 3 (1 k) 2 

+ 3 ( 1 -  k) 2 + o ( ( 1 -  k)2)] 
/ 

a o = cp"(to) = 

- -  + 1 - ~  + 4 ( 1 - k )  

1 + 1 3 + 2(1 - k) 
(1 - k) 2 1 - k 

- 5 ( 1 -  k )2+  o ( ( 1 -  k) 2) 

1 3 5 + - -  10 
a l -  2 (1 - k) 3 (1 - k) 2 1 - k 

+ 12(1 - k ) -  21(1 - k)2+ . . .  

b( _ 2(1 - k) + 3(1 - k) 2, bK ~ (1  -- k)2+ . . .  
b~ bo I 

b--(2: ~ 1 I5 - 10(1 - k) + 22(1 - k) 2 ] 
b / 2 

b(  1 
b--~ ~ 2 I - 6 ( 1  - k) + 39(1 - k) 2] 

from which we obtain the result. 

6. R E M A R K S .  

1. The function f u(1 ) plays the same role that the partition function of 
statistical mechanics plays. The physical quantities are obtained by study- 
ing the singularities when N ~ ~ of the derivatives of log fN (S) at s = 1. 

2. The phenomenon that we have shown in this work seems to be quite 
general: every bifurcation value of the parameter at the macroscopic level 
will correspond to a phase transition at the microscopic level the nature of 
which depends on the bifurcation. Moreover, when one suppresses some 
converse reaction before taking the thermodynamic limit, we can obtain a 
result in contradiction with the macroscopic analysis. We can announce 
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tha t  we have  o b t a i n e d  s imilar  results  for  some k inds  of t r imolecu la r  
reac t ion  of Schl6gl  type  (13) (this analys is  is h a r d e r  than  the p reced ing  one 

a n d  will a p p e a r  soon). Moreover ,  we have  also now some par t i a l  resul t  in 
the case  of d i f fus ion react ion.  

3. W e  also wan t  to po in t  out  the work  of Keizer ,  (6~ where  he  shows 
tha t  the f luc tua t ions  of a r eac t an t  f ixed in average  can  s tabi l ize  a n  uns t ab le  

state. Here,  our  r eac t an t  C is comple t e ly  fixed. W e  hope  to discuss this 
po in t  in our  model .  
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